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The pair-correlation function in two-dimensional lattice gases is computed by means of three discre-
tized classical equations for the structure of liquids: the hypernetted-chain, the Percus-Yevick, and the
crossover integral equations. The equations are numerically solved by an iteration procedure. Two
different systems are considered: the Ising-Peierls lattice gas with nearest-neighbor interactions and a
model for O adsorbed on the W(110) surface, in which interactions up to the fourth neighbors are taken
into account. The values of the pair-correlation function for nearest, next-nearest, and next-next-nearest
neighbors are compared with the results of Monte Carlo simulations at four different coverages ©
(6=%,%,%,%) as functions of the lateral coupling. It turns out that the crossover integral equation
gives the best agreement with Monte Carlo data in both systems, being accurate especially at low 6,
whereas the Percus-Yevick equation fails in a wide range of parameters.

PACS number(s): 61.20.Ne, 05.50.+q, 82.65.Dp, 82.65.My

I. INTRODUCTION

Two-dimensional lattice gases are the most widely em-
ployed models for the description of adsorbed mono-
layers on crystal surfaces [1-3]. In these systems the in-
teractions between the adsorbed particles can be either
short- or long-ranged. For example, for H-W(100) [3,4] a
simple Ising model with only nearest-neighbor interac-
tions is sufficient to reproduce the intensity of the low-
energy electron-diffraction (LEED) spot of the c(2X2)
structure at a coverage ©=0.5; for H-Pd(100) also
second-neighbor interactions are necessary [5,6]; for O-
W(110) interactions up to the fourth neighbors are impor-
tant [7,8]; and, finally, for Na-W(110) dipolar interactions
of infinite range must be taken into account [9]. More-
over, in many systems, three-body interactions are need-
ed in order to explain the asymmetry of the phase dia-
gram with respect to ©=0.5 [1,3].

The knowledge of the two-particle correlation function
is important for the calculation of thermodynamic quan-
tities: for example, the static structure factor S(q) [10]
(which, for adsorbed monolayers, is measured, for in-
stance, by LEED [1]) at wave vector q=0 gives directly
the compressibility equation for the system. Moreover,
the knowledge of the pair-correlation function g () is
needed for the determination of dynamical properties
such as the single-particle (or tracer) [11] and the collec-
tive (or chemical) diffusion coefficients [12].

In general, the calculation of the two-particle correla-
tion function g (/), where [ is a lattice vector, is a rather
difficult problem. In fact, few exact analytical results are
known, essentially in the case of nearest-neighbor interac-
tions at ©=0.5 [13,14], corresponding to the Ising model
without magnetic field. It is known that in two dimen-
sions the mean-field approximation [15] is rather poor.
Moreover, when long-range interactions are present,
many approximation techniques, such as the transfer ma-
trix, and even the Monte Carlo simulations become rath-
er cumbersome.
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In this paper we adapt to lattice gases three well-
known integral equations for the structure of liquids: the
Percus-Yevick (PY), the hypernetted-chain (HNC)
[10,16,17], and the crossover integral (CI) equations
[18,19]. In a previous work [11] g(l) was computed by
solving the discretized form of another classical equation
for the structure of liquids: the mean spherical approxi-
mation (MSA), in the case of nearest-neighbor interac-
tions. It turns out that the MSA is accurate only at rath-
er small lateral interactions, i.., |BJ]|<0.8, where
B=1/kgT and J is the nearest-neighbor coupling; at
higher |BJ| the MSA seriously underestimates g (I), espe-
cially in the attractive case (J <0).

The properties of the discretized forms of PY, HNC,
and CI equations have been studied in the critical region
in order to determine the critical point and the critical
exponents [19-21]. The critical behavior of the Ising
model is not correctly described by these equations either
in two or in three dimensions. However, far away from
the critical region, these equations should give a correct
description of the structure of the lattice gas, as the MSA
does. Here we solve the three equations and we calculate
g(l) for two different models: the first model is the
Ising-Peierls lattice gas, where only repulsive or attrac-
tive nearest-neighbor interactions are present; in the
second case we consider the system O-W(110), for which
interactions up to the fourth-nearest neighbors must be
considered. In both cases, we investigate the high-
temperature region of the phase diagram, where a single
disordered phase exists; the accuracy of the three equa-
tions is tested against Monte Carlo data and, where possi-
ble, against exact analytical results. Our aim is to check
whether these equations can be safely used in order to
compute the static correlations for different kinds of in-
teractions between the particles, corresponding to
different systems of interest in surface physics.

The paper is organized as follows. In Sec. IT we sketch
the numerical procedure; in Sec. III we present the re-
sults for the Ising-Peierls model on a square lattice; in
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Sec. IV we consider a model for oxygen adsorbed on
W(110). Finally, in Sec. V we present the conclusions
and outline the direction for future work.

II. THEORY AND NUMERICAL PROCEDURE

Let us consider a two-dimensional (2D) lattice partially
filled by identical particles. The lattice sites are denoted
by the vectors I. If only pairwise interactions between
the particles are taken into account, the Hamiltonian of
the lattice gas becomes of the following form:

H(n):%z VI_snIns—,u.znl N (21)
I,s 1

where a lattice configuration is denoted by n={n,} and
each site occupation number n; can assume only the
values 0 and 1 (this accounts for the hard-sphere repul-
sion between the particles). V;_ is the pairwise interac-
tion and p is the chemical potential which determines the
coverage {(n;)=6.

The pair correlation function g (1) is defined as

gl)=

{nqn;)
—21 for 150, 2.2)

g(0)=0. (2.3

The quantity ©g(l) is the probability of site / being occu-
pied if site O is full; therefore the maximum value that
g(I) can attain at a fixed coverage © is simply © ' (in
this case also site [ is occupied with probability 1).

The pair-correlation function is calculated by adapting
the classical integral equations for the structure of fluids
to the lattice gas. As specified in the Introduction, we
consider three different equations which have been widely
employed in the computations of the structure of simple
fluids [10,16]: the PY, HNC, and CI equations.

Let us introduce the direct correlation function ¢ (1),
which is connected to g (/) by the Ornstein-Zernike rela-
tion [10]:

h()=c()+O© 3 c(l—s)h(s), (2.4)
where
h(l)=g()—1. (2.5)

The three equations are defined by different closure rela-
tions. For I =0 the closure relation is given by Eq. (2.3)
for all of them. For /70 the PY is defined by [10,17]

c()=[1—exp(BV)][A(1)+1] (2.6)
and the HNC equation by
c()=—BV,+h(l)—In[h(1)+1]. (2.7)

Finally, the CI equation assumes that the closure relation
is given by Eq. (2.7) only for the lattice sites / within the
range of the potential, whereas ¢(/)=0 outside the range
of the potential. For infinite-range potentials the HNC
and CI equations coincide.

Let us briefly explain the hypothesis leading to the CI

equation, which is perhaps the less known among the
three. In the CI equation the bridge function E (/) [10] is
approximated as follows [19]. At short distances (i.e.,
within the range of the potential), E (/) is assumed to
coincide with the hard-sphere value of the bridge func-
tion. Noticing that the equivalent of hard spheres is the
lattice gas without lateral interactions, for which the
bridge function vanishes, it turns out that E (I )=0 within
the range of the potential; this leads to the HNC closure
at short distances. Outside the range of the potential the
MSA is assumed to be a good approximation; for the
MSA one has that E(I)=In[g(l)]—h(l) and therefore
c(1)=0.

The pair-correlation function 4 (l) is computed by
solving the three equations through an iteration pro-
cedure on a lattice of finite size. From (2.3) and (2.4) we
find

C(O)Z‘"L

- ; (2.8)

1+6 3 c(s)h(s)

s (#0)

then the Ornstein-Zernike relation yields the following
expression for A (1) at 170:

h(l)=—1

—m C(I)+e 2 c(lI—s)h(s)

s (#1)

2.9

Starting from a trial correlation function 4 (/) we obtain
¢, (1) from the proper closure relation and from Eq. (2.8);
then ¢(I) and h (1) are inserted in Eq. (2.9) in order to
get the intermediate quantity 4 (). The new trial correla-
tion function 4,(1) is chosen to be

hy(D)=ah(D)+(1—a)h, (1), (2.10)

where 0 <a <1 is chosen in order to achieve a faster con-
vergence. Usually we set a=1; however, in some cases
(for example, for a potential with only nearest-neighbor
repulsive interactions) convergence is faster with a small-
er a. The procedure is repeated until

hy(D—h, (D] <€ ; @.11)

for every I; € is a small number, typically e=10"°. The
convergence is also checked by changing the size of the
lattice; however, at the interaction strengths considered
in the examples treated in the following sections, a
40 X 40 lattice is always sufficient.

III. NEAREST-NEIGHBOR INTERACTIONS

In this section we study the two-point correlation func-
tion A (1) in the case of the Ising-Peierls lattice gas on a
square lattice, i.e., throughout this section we set

V,_=J (3.1

S

if the sites I and s are nearest neighbors and V;_,=0 oth-
erwise. If J>O0 the interactions are repulsive; if J <0
they are attractive. Besides, we consider values of |BJ]
lower than the critical value 1.76.

In Figs. 1-4 we plot A (1) for nearest (1,0), next-nearest
(1,1), and next-next-nearest (2,0) neighbors, as a function

of the interaction strength BJ for ©=1, 1, 1, and 3. The
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results of the PY equation are represented by the dashed
lines, the dot-dashed lines give & in the HNC approxima-
tion whereas the solid lines are the values obtained by the
CI equation.

The black dots represent the results of Monte Carlo
simulations, which are used in order to test the validity of
the various approximations. We work with a square lat-
tice of M =32X32=1024 sites and periodic boundary
conditions. We are interested in the behavior of the lat-
tice gas for low lateral coupling, far from the critical
point; therefore we find a size 32X32 sufficient for our
purposes. We compute the correlation function for both
attractive and repulsive interactions below the critical
point: BJ ==0.4, £0.8, £1.2, £1.5. The correlation
function is given by

g(1)=—1—<2 nsns+,> , (32)

40°M*
where { ) denotes the average over many independent
Monte Carlo runs. After an appropriate thermalization
we compute g(1,0), g(1,1), and g(2,0) over 1000 in-
dependent realizations every five Monte Carlo steps per
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FIG. 1. Ising-Peierls lattice gas: pair-correlation function
h(1) for first (upper panel), second (intermediate panel), and
third (lower panel) neighbors at 9=% as functions of the lateral
coupling. Solid lines: CI equation. Dashed lines: PY equation.
Dot-dashed lines: HNC equation. The black dots are the result
of the Monte Carlo simulations.
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particle, until their values become independent of the
Monte Carlo time.

At ©=1 (Fig. 1) the three approximations coincide for
repulsive interactions and they give values of 4 in very
good agreement with Monte Carlo simulations. As an
example, for BJ =1.5 the three results for 4 (1,0) are ac-
curate to 1%. In the case of attractive interactions the
three approximations are no longer coincident. In partic-
ular, our program is unstable for the HNC equation if
BJ < —1. We discuss this point at the end of this section.
It turns out that the CI equation is the better approxima-
tion to the Monte Carlo data. In the range —1.5<f8J <0
the values of 4 (1,0) predicted by the CI equation differ
from the Monte Carlo results by less than 1%.

Things are not very different at ©=1 (Fig. 2), even if
the CI result deviates slightly from the other two approx-
imations in the repulsive case, where the PY and HNC
equations give the best results. As an example, if
BJ =1.5 then the PY value for A (2,0) is accurate to 4%,
whereas the CI value is within 12% of the Monte Carlo
point. However, when A (1,0) is taken into account the
CI relative error is only 3%. The CI approximation is
again the best in the attractive region, its accuracy being
always better than 7% for h (1,0). Here the PY equation
is good only in a limited coupling range (—0.4 <fJ <0)
and it fails elsewhere and the HNC becomes soon unsta-
ble.
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An exact result is available only in the case © = (Fig.
3), where the lattice gas is equivalent to the Ising model
with nearest-neighbor interactions and without a magnet-
ic field. This equivalence can be easily shown using the
transformation

1—0'1
n = )

(3.3)

Therefore 0;=—1 corresponds to an occupied site and
0;= +1 corresponds to an empty site. At ©= we have:

(ngn;)=1((ogo,)+1). (3.4)
Formula (5.4) of Cheng and Wu’s paper [14] gives an in-
tegral representation of (oq0;). For I=b;=(1,0), one

obtains [13]:

(ooabl)=coth(BJ/2)[a(k)A (BJ;k)—b(k)B(BJ;k)],

(3.5)

where

FIG. 3. The same as in Fig. 1, but at 6=%. In the upper
panel the results of the three equations are compared with the
exact solution represented by the dotted line (see text for ex-
planation).

k =(sinhBJ /2)72, (3.6)
BJ/2 dx
A (BT k)= , (3.7
B fo (1+ k%sinh2x)!/2
BJ /2 tanh®x
B(BJ;k)= , (3.8)
A J, (14 ksinh?x) 2 2~
a(k)=26(k) , (3.9)
o
2
b(k)—;(l-k)i{(kl) , (3.10)

where # and & are the complete elliptic integrals of
the first and second kind, respectively, and
k,=2k'”2/(14+k). The results of the three approxima-
tions for A (1,0) are compared with the exact result in
Fig. 3 (upper panel). The PY approximation seems to
work better in the repulsive region, but one has to stress
that the overall trend of the PY curve does not reflect
that of the exact curve. At this coverage the HNC and
CI curves virtually coincide and they give rather good re-
sults if |8J] <0.8. In the attractive case the PY equation
greatly underestimates the correlations if BJ < —0.4.
These considerations are true even for £(1,1) and 4 (2,0).

At ©=21 (Fig. 4), like at ©=1, the HNC and CI ap-
proximations are in good agreement with Monte Carlo
data if |BJ]| <0.8 [the relative error being less than 9%

~. 008
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o

FIG. 4. The same as in Fig. |, but at 6= 3.
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for A (1,0)]. On the contrary the PY equation completely
fails.

More than once we have remarked that the CI and the
HNC equations give almost the same results. This is true
of nearest, next-nearest, and next-next-nearest neighbors.
Of course, this is not necessarily the case in the asymptot-
ic region.

Before closing this section we must remind the reader
that the HNC equation gives unstable solutions in the ex-
plored attractive range. In Fig. 5 we report the “spino-
dal” curve separating the regions of stability from those
of instability. Recently, for the case of three-dimensional
liquids and for different interaction potentials, it has been
shown that the line separating stable and unstable solu-
tions is not a true spinodal line [22]. This might happen
also in our case; however, we have not investigated this
point in detail because it is outside the scope of the
present work.

From the above discussion we can conclude that the CI
equation gives the best results at low coverages (O <1).
It is almost exact in the attractive region, whereas it is
only slightly worse than PY for repulsive interactions.
Moreover it is not affected with the instabilities of the
HNC equation. At higher coverages it gives reliable
values in the range —1.2<8J<0.8 at ©=1 and in the
range —0.8<BJ <0.8 at ©=3.

IV. MODEL FOR 0-W(110)

The system O-W(110) at submonolayer coverages has
been experimentally studied both from the point of view
of the determination of the phase diagram [7,23] and of
the measure of the collective diffusion coefficient [12]. It
has been shown that in this system lateral interactions up
to fourth-nearest-neighbors are important [7]. In order
to explain the asymmetry of the phase diagram with
respect to © = 1, three-particle interactions have been in-
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FIG. 5. The “spinodal” curve for the HNC equation. The
open circles are calculated solving the HNC by the iteration
procedure described in the text; the solid line is a guide for the
eye.
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troduced also [8]; however, their coupling constant is not
large. In the following the three-body interactions will be
neglected; this implies that at © >} the model here is no
longer a good description of the system O-W(110). How-
ever, at low coverages, the three-body interactions should
be really negligible. The unit cell of the lattice of adsorp-
tion sites is a rhombus (see Fig. 6); there are four first
neighbors at a distance V'3a /2 (one of them is indicated
as b, in the figure), two second neighbors (b,) at a, two
third neighbors (b;) at V'2a, and four fourth neighbors
(b,y) at V'3a. The corresponding interaction energies are

(7]
J,=-—2.1 kcal/mole ,
J,=J;=1.7 kcal/mole , 4.1
J4=—0.7 kcal/mole .

From these values of the lateral interactions it follows
that second and third neighbors are equivalent for what
concerns the equilibrium properties of the system; this
implies that this model can be studied also by transform-
ing the rhombus into a square [8], i.e., by considering the
diagonals of the rhombus as if they were equal. There-
fore in the following we will refer to 4 (b,), remembering
that 4 (b3)=h (b,).

The results #(b,), A (b,), and & (b,) according to the
three approximations are shown, as functions of the in-
verse temperature, in Figs. 7-10. As in Sec. II we con-
sider four different coverages and compare the theoretical
results to those of a Monte Carlo simulation of the lattice
gas. We consider temperatures at which only the disor-
dered phase exists; the ordered phase is a p(2X1) which
is stable below 720 K at © =1 and below about 500 K at
©=1 (see the phase diagram in Ref. [23] or [12]).

At every coverage and temperature, i (b;) and k (b,)
are positive whereas & (b,) and & (b;) are negative; this
fact is not surprising since the first- and fourth-neighbor
interactions are attractive and the other ones are repul-
sive. The overall effect of the interactions of Eq. (4.1) is
to enhance the fourth-neighbor correlations. In fact at
sufficiently low temperature the latter correlations be-
come stronger than the nearest-neighbor ones. As the
coverage increases, this happens at higher and higher
temperatures: for instance, below 550 K at 6=% and
below 1000 K at ©=1.

be . .

FIG. 6. The lattice of adsorption sites for O on W(110).
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At low coverage (©=1, Fig. 7) the behavior of the
three correlations is very well reproduced by the CI equa-
tion, which is in very good quantitative agreement with
the Monte Carlo data even well below 1000 K, i.e., in the
temperature range of major interest from the experimen-
tal point of view: the differences are within 5% down to
600 K and within 8% down to 500 K. As for the HNC
equation, it shows an instability at 627 K; this instability
is analogous to that found for the model with nearest-
neighbor attractive interactions. However, above 650 K
the results of the HNC equation practically coincide with
those of the CI equation and therefore they are in very
good agreement with the Monte Carlo points. On the
contrary, the PY equation is satisfactory only at very
high temperatures, above 1100 K, even in this low-
coverage case; below that temperature the results of the
PY equation are in apparent disagreement with the
Monte Carlo points. In particular, the PY equation pre-
dicts that the first and the fourth neighbors are less corre-
lated than they should be, while the second and the third
neighbors seem more correlated [notice that the strength
of the correlation is given by the absolute value of 4 (1)].

At ©=1, the CI equation is still a satisfactory approxi-
mation at temperatures of experimental interest. This
fact can be seen in Fig. 8, where a temperature range
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FIG. 7. O-W(110): pair-correlation function h(l) for first
(upper panel), second or third (intermediate panel), and fourth
(lower panel) neighbors at ©= 3 as functions of the inverse tem-
perature. Solid lines: CI equation. Dashed lines: PY equation.
Dot-dashed lines: HNC equation. The black dots are the result
of the Monte Carlo simulations.
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down to 700 K is reported. The maximum difference be-
tween the CI results and the Monte Carlo data is of about
2% for what concerns h(b;) and h (b,), whereas it is of
5% for what concerns h (b,). In this temperature range
the HNC gives essentially the same results as the CI (the
instability is around 670 K); the PY equation well repro-
duces only the behavior of 4 (b,), being unsatisfactory for
the other correlations.

Also at ©=1 (Fig. 9), CI and HNC equations give al-
most coincident results down to 700 K. Both approxima-
tions are less precise than at lower coverage, being, how-
ever, in good agreement with the Monte Carlo data for a
rather wide range of temperatures. For instance, i (b,) is
calculated with a precision better than 7% down to 900
K; below 800 K both the equations are not able to repro-
duce the correct nearest-neighbor correlations because
the critical temperature (721 K) is approached. As the
neighbor distance increases, the agreement between the
equations and the Monte Carlo data improves: h(b,) and
h(b,) are calculated with a precision better than 10%
down to 800 and 750 K, respectively. As for the PY
equation, it does not give satisfactory results at any tem-
perature of physical interest.

At ©=2 (Fig. 10), CI and HNC equations are within
10% only down to about 1000 K for what concerns 4 (b,)
and A (b;); better results are obtained for 4 (b,). Also in
this case the PY equation gives the worst results. We re-
mark, however, that, at such a high coverage, the two-
body interactions specified by Eq. (4.1) are not sufficient
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to correctly describe O-W(110); three-body interactions
are no longer negligible.

Finally, we remark that the CI equation describes ac-
curately the pair correlations for this model in a wide
range of temperatures at coverages © < 1; at higher © the
CI approximation is accurate only at very high tempera-
tures. At temperatures below 700 K and at low cover-
ages, the validity of the HNC equation is limited by its
instability. Where the HNC is stable, it gives essentially
the same results as the CI. Of course, the results are the
same at least for correlations up to the fourth neighbors.
The asymptotic behavior for large distances is different;
according to the HNC, long-distance correlations are
stronger than according to the CI. The PY equation is
not satisfactory even at low coverages and it cannot be
employed to describe O-W(110) in any parameter range
of physical interest.

V. CONCLUSIONS

We started the present study in order to find efficient
methods to compute the static correlations in two-
dimensional lattice gases, which are the most widely em-
ployed models for the description of adsorbed layers on
crystal surfaces. We are interested in finding a general
method which can be used both in systems with short-
range and with long-range interactions. In adsorbed lay-
ers many examples of systems with very different lateral
interactions can be found [3].

The pair-correlation function is important because it
allows one to compute static properties of experimental

Qa L 0=1/2
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01 - ® .
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FIG. 9. The same as in Fig. 7, but at 6= %

interest [1,12] such as the static structure factor and the
compressibility [10]; moreover, it is used in the calcula-
tion of dynamical quantities such as the coherent and in-
coherent dynamic structure factors and the chemical and
tracer diffusion coefficients [11,24].

In this paper we have shown that the discretized classi-
cal equations for the structure of liquids can give a rather
accurate description of the pair correlations in two-
dimensional lattice gases. In particular, the crossover in-
tegral equation can be satisfactorily applied in a large
range of temperatures and coverages. In fact, we have
shown that the CI equation works well both in the case of
nearest-neighbor interactions and in the case of O-
W(110). As far as repulsive interactions are present, the
HNC equation gives practically the same short-range
correlations as the CI, at least in the interaction range
considered here. When the interactions present an at-
tractive part, the discretized HNC shows instabilities,
which, at low coverages, are well above criticality. As for
the PY equation, we obtain satisfactory results only in
the case of repulsive nearest-neighbor interactions at
rather low coverages. From the above discussion, we can
conclude that the CI equation gives the best results.

However, there are still some regions of parameters, in
particular the high-coverage region, which are not de-
scribed accurately by any of the equations considered
here. Besides, all three equations fail to describe the criti-
cal behavior of lattice gases. Therefore different ap-
proaches should be used; good candidates could be the
PY2 and HNC?2 equations. [10] and the hierarchical refer-
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FIG. 10. The same as in Fig. 7, but at 6= 3.
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ence theory [25], which can be considered as a liquid-
state version of the renormalization-group approach.

The PY2 and HNC2 equations should also give the
three-point correlation function, which is important in
the calculation of the diffusion coefficients. Usually the
three-point correlation function is evaluated in the Kirk-
wood superposition approximation [10]. In a recent pa-
per [26] it has been shown that the Kirkwood approxima-
tion is not accurate for the hard-sphere liquid; therefore,
also in lattice gases more sophisticated approximations,
such as PY2 and HNC2, might be necessary.

Finally, another topic of interest in the field of ad-
sorbed layers is the study of the properties of systems
with three-body interactions. By means of those interac-
tions, which are of course important at high coverages,

the asymmetry of the phase diagrams with respect to

=4 can be explained [1]. Recently, three-body poten-
tials have been introduced in the HNC closure for three-
dimensional liquids [27]; the discretized version of this
closure might be useful in the study of the properties of
adsorbed layers at high coverages.
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